
2/10/15 CS161 Spring 2015 1 1

Making Processes

•  Topics
•  Process creation from the user level:

•  Fork, exec, wait, waitpid, pipe

•  Learning Objectives:
•  Explain how processes are created
•  Create new processes, synchronize with them, and

communicate exit codes back to the forking process.

Where do Processes Come From?

•  There are two models of process creation:
•  Copy an existing process (UNIX fork/exec model).
•  Single system call to create a new process (Windows

model).

•  The pthread interface is similar to the “create new
process” model – it just creates threads instead of
processes.

•  In UNIX (and OS/161) we use the fork/exec
model.

2/10/15 CS161 Spring 2015 2

Fork

•  System call that copies the calling process, creating a
second process that is identical (in all but one regard)
to the process that called fork.

•  We refer to the calling process as the parent and the
new process as the child.

•  On return from successful fork:
•  Parent: return value is the pid of the child process.
•  Child: return value is 0.

•  If the fork fails:
•  No child process created.
•  Parent gets return value of -1 (and errno is set).

2/10/15 CS161 Spring 2015 3

Programming with fork!

#include <unistd.h>!
pid_t !ret_pid;!
!
ret_pid = fork();!
switch (ret_pid){!

!case 0:!
! !/* I am the child. */!
! !break;!
!case -1:!
! !/* Something bad happened. */!
! !break;!
!default:!
! !/*!
! ! * I am the parent and my child’s!
! ! * pid is ret_pid.!
! ! */!
! !break;!

 }!

2/10/15 CS161 Spring 2015 4

But what good are two identical processes?

•  So fork let us create a new process, but it’s identical to the
original. That might not be very handy.

•  Enter exec (and friends): The exec family of functions replaces
the current process image with a new process image.

•  exec is the original/traditional API
•  execve is the modern day (more efficient) implementation.
•  If execve returns, then it was unsuccessful and will return -1 and

set errno.
•  If successful, execve does not return, because it is off and

running as a new process.
•  Arguments:

•  Path: Name of a file to be executed
•  Args: Null-terminated argument vector
•  Envp: Null-terminated environment.

2/10/15 CS161 Spring 2015 5

Programming with Exec

2/10/15 CS161 Spring 2015 6

#include <unistd.h>!
#include <errno.h>!
#include <stdio.h>!
pid_t !ret_pid;!
!
ret_pid = fork();!
switch (ret_pid){!

!case 0:!
! !/* I am the child. */!
! !if (execve(path, argv, envp) == -1)!
! ! !printf(“Something bad happened: %s\n”,!
! ! ! strerror(errno));!
! !break;!
!case -1:!
! !/* Something bad happened. */!
! !break;!
!default:!
! !/*!
! ! * I am the parent and my child’s!
! ! * pid is ret_pid.!
! ! */!
! !break;!

}!

Coordinating with your child

•  Sometimes it is useful for a parent to wait until a
specific child, all children, or any child exits.

pid_t wait (int *stat_loc)!
pid_t waitpid(pid_t pid, int *stat_loc, int options)

•  wait: suspends execution of the parent until some
child of the parent terminates or the parent receives a
signal.
•  Return value is the pid of the terminating process
•  stat_loc is filled in with a status indicating how/why the

child terminated.

•  waitpid: suspends until a particular child
terminates.

2/10/15 CS161 Spring 2015 7

Programming with Fork, Exec, Wait

2/10/15 CS161 Spring 2015 8

#include <sys/wait.h>!
#include <unistd.h>!
#include <errno.h>!
#include <stdio.h>!
pid_t !ret_pid;!
!
ret_pid = fork();!
switch (ret_pid){!

!case 0:!
! !/* I am the child. */!
! !if (execve(path, argv, envp) == -1)!
! ! !printf(“Something bad happened: %s\n”,!
! ! ! strerror(errno));!
! !break;!
!case -1:!
! !/* Something bad happened. */!
! !break;!
!default:!
! !/*!
! ! * I am the parent and my child’s!
! ! * pid is ret_pid.!
! ! */!
! !if (waitpid(ret_pid, &exit_status, WNOHANG) != ret_pid)!
! ! !printf (“Something bad happened!\n”);!
! !break;!

 }!

Communicating with child processes

•  You’ve all used the | character to create pipes on the
command line in the shell (I hope).

•  What exactly does the pipe character do?
•  The effect:

•  When you type:
% foo | bar!

•  The stdout stream of foo is connected to the stdin stream of bar.
•  stdin/stdout (and stderr) are default file descriptors that

are opened on behalf of every process.
•  By convention, stdin comes from the console
•  By convention, stdout goes to the display

•  We want to connect foo’s stdout to bar’s stdin …

2/10/15 CS161 Spring 2015 9

The pipe system call

•  pipe(int filedes[2]) creates a pair of file
descriptors, pointing to a pipe inode and places them
in the array referenced by filedes.
•  filedes[0] is for reading
•  filedes[1] is for writing

•  When a parent forks children, the parent and child
share file descriptors.

•  By combining, fork, exec, and pipe, parents can
communicate with children and/or set up pipelines
between children.

2/10/15 CS161 Spring 2015 10

Creating a Pipeline (foo | bar)
Note: Terrible error handling to save space!

pid_t child1, child2;!
int pipedes[2], status;!
!
assert (pipe(pipedes) == 0); ! !/* Create the pipe. */!
child1 = fork();!
if (child1 == 0) {!

!/* child */!
!close(pipedes[0]); ! !/* Close read end */ !!
!dup2(pipedes[1], STDOUT_FILENO); /* Make stdout the same as the pipe write fd */!
!execve(“foo”, argv, envp); !/* Assume argp, envp are set */!

}!
/* only parent gets here */!
child2 = fork();!
if (child2 == 0) {!

!/* child */!
!close (pipedes[1]); ! !/* Close writing end */!
!dup2(pipedes[0], STDIN_FILENO); !/* Make stdin the same as the pipe read fd */!
!execve(“bar”, argv, envp);!

} !
/* Parent once again */!
close (pipedes[0]); ! ! !/* Close pipe fDs in parent. */!
close (pipedes[1]);!
waitpid(child2, &status, 0); ! !/* Wait for second process to complete. */!
!
!
!

2/10/15 CS161 Spring 2015 11

pid_t child1, child2;!
int pipedes[2], status;!
!
assert (pipe(pipedes) == 0); !!
child1 = fork();!
if (child1 == 0) {!

!/* child */!
!close(pipedes[0]); !!
!dup2(pipedes[1], STDOUT_FILENO);!
!execve(“foo”, argv, envp);!

}!
/* only parent gets here */!
child2 = fork();!
if (child2 == 0) {!

!/* child */!
!close (pipedes[1]);!
!dup2(pipedes[0], STDIN_FILENO);!
!execve(“bar”, argv, envp);!

} !
/* Parent once again */!
close (pipedes[0]);!
close (pipedes[1]);!
waitpid(child2, &status, 0);!
!
!
!

2/10/15 CS161 Spring 2015 12

Creating a Pipeline (foo | bar)
Note: Terrible error handling to save space!

Parent address space

Read fd
Write fd

pipedes
0
1

Child1 address space

Read fd
Write fd

pipedes
0
1

stdout

Child2 address space

Read fd
Write fd

pipedes
0
1

stdin

The OS’s job during process creation

•  Fork:
•  Ensure that the parent is not running (i.e., if it is multi-threaded,
none of its threads is running).

•  Create a new process.
•  Copy the parent process to the child process.

•  The details of this will depend on your implementation of processes.
•  Fix up the return of the two processes so the parent and child

get different return values.
•  Exec:

•  Replace old process contents with new process.
•  Wait:

•  Allow parents to wait on children and properly collect exit status.
•  Pipes and FDs:

•  Be sure to understand what happens to FDs across a fork, exec
and make sure you do the same!

2/10/15 CS161 Spring 2015 13

