
Assignment 4 Section Notes #2

CS161 Course Staff

April 21, 2015

1 Administrivia

• There’s a patch to truncate; it’s been pushed to the handout repo. See Piazza.

• While there’s no class 4/30, we’re trying to make sure we have the room reserved so everyone
can come and hack in 301 during class time.

• The assignment is due May 1.

2 Unlinked Files

As (hopefully) discussed in designs, you need some kind on-disk morgue / graveyard / orphanage
/ homeless shelter for holding files that have been unlinked but not yet reclaimed.

There are various possible ways to implement this. The “right” way is to use an extra inode, and
either reserve its inode number or store the number in the superblock. If you use an inode, you can
use sfs metaio and other already-existing functions to manipulate it. (You can even make it a
directory and use the directory functions to manipulate it.)

However, there are other cheesier things you can get away with here that you probably wouldn’t
want to do if you were writing a file system for production use, like reserve a special block or even
use space in the superblock.

In any of these cases, you want to make it a first-class citizen of the file system, meaning

• have mksfs initialize it;

• teach dumpsfs to dump it for debugging;

• teach sfsck to know it’s there so it doesn’t think the blocks involved are leaked;

• journal all updates to it that occur at run time.

Ideally you also want sfsck to check that it’s empty (exercise: why should sfsck always see it empty?)
but this is less critical.

To use your morgue / graveyard / orphanage / homeless shelter, you’ll want to move files
and directories to it when they’re unlinked, which is in sfs rmdir and sfs remove. Then when
they’re reclaimed, in sfs reclaim, take them out again. (Both regular files and directories should
be handled this way as both can be held open after being unlinked.)

1



Recovering with the journal will give you a file system where any leftover unreclaimed files are
sitting in the graveyard. Therefore, after this is done, but before mount finishes, you can go through
the graveyard and finish reclaiming the files there. This involves both truncating and freeing the
inode - note that you don’t need to write special code to do this, but can instead just load a vnode
and drop the reference that gives you; that will go through VOP RECLAIM in the normal way.
Clearing the graveyard will create journal records, because it updates the disk, so after you’re done
with this you may want to issue another checkpoint before going fully live.

Note that directories are truncated at rmdir time, because the semantics of directories require
that you can’t use them once they’re unlinked; but regular files aren’t. Consequently some of the
objects in the graveyard will need truncation, and some won’t; this doesn’t really matter though.

3 Implementing Journal Records

Some tips for implementing journal records without going crazy:

• Define a struct for each record type. If you have common pieces, use more structs for those.

• Give each record type a type code. Create #defines for these, or an enum.

• Put all this material in kern/sfs.h so it’s visible in userland code.

• When reading records out of the journal, switch on the type code first.

• Do something reasonable (panic, fail) if you get an unknown type code. This will likely hap-
pen to you at least once due to bugs. Don’t ignore unknown records.

• Assert that the size of the record is what it’s supposed to be, or within the bounds of what it’s
allowed to be.

• Only then touch the blob pointer.

• Unless you’re sure your records are always fully word-aligned, memcpy out of the journal into
an instance of the record type declared locally. Don’t waste time debugging alignment errors.

You can make a union of all your record types, but you shouldn’t need to.
Also, use the type codes, record structs, and any accessor macros or other material you have

to teach dumpsfs to print out your journal records. You will be dumping the journal to see what’s
going on, probably a lot.

If you change kern/sfs.h, remember to do make includes in the top level of the kernel source
to install the new version before rebuilding dumpsfs. (Rebuilding everything from the top does this
but in general takes long enough to be annoying.)

We strongly recommend having a place (one specific place, maybe in a big comment in kern/sfs.h,
maybe in the design doc) where you document exactly what the record types are, what each field
of each record type is, and what each of these things means, and keep it up to date if/when you
make changes.

Also, if you need to make substantive changes, either to the contents of a record or (more so) to
its semantics, use a new record type name and new type code number and retire the old one. This

2



helps make sure all references in the code get updated, and also means that if you accidentally fail
to and encounter the old record at recovery time you can panic instead of doing wrong things.

If you are really clear on what the records are and what they mean, it’s perfectly feasible for
one partner to work on the recovery code and one to work on the record issuing code. However,
because it’s difficult to test the recovery code until you have records coming out, this split might
actually not work so well in practice.

4 The Container Code

Ideally you won’t have to wade into sfs jphys.c; but you do have to live with it, so here are
some things you probably do want to know.

Verbose recovery. If you uncomment SFS VERBOSE RECOVERY in sfsprivate.h, the container-
level recovery in sfs jphys loadup will print what it’s doing. This can be useful. Even more
useful is to use this hook to have your own recovery code print stuff while it runs. (If your ex-
perience is anything like mine, you’ll leave verbose recovery on until you’re almost done with the
assignment.)

There’s a SAY macro in sfsprivate.h that’s a conditional wrapper around kprintf for printing
stuff when verbose recovery is on. (There’s also an UNSAID macro that you can use to avoid related
unused variable warnings when verbose recovery is off.)

Internal records. The jphys code uses two record types of its own, pad records and trim records.
Pad records appear when a journal block is not otherwise full. (However, if padding smaller than
the size of a record header is needed, it’s implicit.) Trim records keep track of where the on-disk
journal tail is and are issued with sfs jphys trim during checkpointing. These records are not
directly exposed (the journal iterators skip over them) but you will see them if you dump the
journal, which you will do a lot.

The journal buffers. The jphys code keeps two buffers available: one for the current journal
head (where new records are added) and one that’s not directly used but will become the next
head buffer. When the current head block fills up, that buffer’s released and the next buffer is
moved into place. This happens inside the journal lock.

However, it isn’t safe to get more buffers inside the journal lock (because getting buffers can
trigger buffer evictions, and evictions might need to flush the journal), so the new next buffer isn’t
fetched until after the current journal write is finished and the journal lock can be released.

If at this point other threads come along to write journal records, they block on a CV (jp nextcv)
until the new next buffer appears. This avoids cases where a flood of incoming requests can fill up
the newly deployed journal head buffer before there’s a new next buffer to replace it with. (If that
happens, the jphys code panics.)

Flushing-related metadata. The jphys code keeps track of the first LSN in each journal buffer,
and the oldest journal block that’s still in memory. This material has its own spinlock (which you
shouldn’t have to interact with) and is used for flushing the journal out.

3



Head/tail collisions. The jphys code does not detect head/tail collisions. This is a bug, and will
hopefully get fixed next year – if I have time it’ll get fixed next week, but I can’t make any promises.

If the in-memory head collides with the in-memory tail (meaning the whole journal is still in
memory) you will probably deadlock. This is very unlikely to happen, because the syncer is making
sure blocks get written out reasonably promptly and that should trigger journal flushes. If this
happens, it almost certainly means you aren’t flushing the journal.

If the on-disk head collides with the on-disk tail, the result will be that when you go to load up
the journal it either can’t find a trim record at all (if the last one disappeared under the tide of new
journal records) or it finds a trim record but it can’t find the journal tail. Apart from the cases with
very large writes and truncates that we explicitly don’t intend you to worry about, if this happens
it almost certainly means you aren’t checkpointing, either often enough or possibly at all.

5 Testing

There’s a fairly wide variety of test workloads in testbin/.
Use the doom counter to crash the system in the middle. Early on, pressing Ĉ while the system’s

running will serve fine; later on, the advantage of the doom counter is that it will give repeatable
results (or mostly repeatable results) and also, by incrementing the doom number one at a time
you can exercise different combinations of buffers being written out.

Some of the tests have phases; crashing in the different phases is usually a materially different
recovery problem. Particularly in frack, some tests have an explicit sync between phases; generally
this means that the first part is setup for the second part and crashing in the second part is what’s
supposed to be interesting.

When you first start testing, don’t even bother trying to run recovery; instead, just dump the
journal and check it to see if it’s correct and complete. (The first few times, it won’t be.)

Once you’re generating the right log records you can proceed to trying to recover with them.
Testing recovery from wrong log records isn’t very rewarding.

Poisondisk. The poisondisk program clears a disk image to a known nonzero value (0xa9). Run
this on your test disk image, then run mksfs, then run a test workload; if you see 0xa9 coming
through (or 0xa9a9, or 0xa9a9a9a9) you know you’re getting stale block data.

Mostly this will manifest in user data if you aren’t handling uninitialized user data right; but it
can crop up in metadata structures too if you have the right (wrong) bugs.

frack. The frack (filesystem crack) test contains a large number of test workloads and a valida-
tor for them. As described in the assignment text, use frack run to run a workload; then after
crashing and running recovery, use frack check to validate the filesystem state.

It will match what it finds in the filesystem against the sequence of states arising from the
workload. If it doesn’t find an exact match, it finds the closest match (the logic it uses for this is
primitive and may not do a great job) and lists the discrepancies. When it finds zeroed ranges of
files, it will announce them; this isn’t “complaining” or a failure per se. If it finds the wrong data, it
will complain.

Note that it doesn’t react all that well to half-finished write operations; e.g. if the workload
wrote out a 16K and 8K made it to disk (so the file length is 8K and the data is there) it will get

4



upset, whereas if it sees a 16K file with the same 8K of data and 8K of zeros from the unfinished
write it will be fine with that. Since allowing writes to be half-finished is a reasonable way of
dealing with partially written user data, it would be nice if frack were smarter about this; but it
isn’t entirely trivial to make it so.

6 Some Other Stuff

The freemap. As noted before/elsewhere, the free block bitmap is not handled through the buffer
cache. This makes it a special case needing special handling. (This should really be fixed sometime.)

Treat it as a special case of buffer; give it the same metadata as a buffer and scan that metadata
when you’d scan buffer metadata. Also, because by default it only gets written during an explicit
sync, youll want to write it out from time to time.

Because sfs freemapio does go through sfs writeblock you will not need any special
handling to ensure WAL for the freemap beyond scanning the freemap metadata just as you’d scan
the buffer metadata to properly flush the journal in advance of writing blocks to disk.

Buffer reservation during recovery. As per a Piazza post over the weekend, before scanning
the journal, reserve some buffers with reserve buffers, and unreserve them again when done.
Otherwise you’ll assert inside the buffer cache. I think I lied last week about the need to do this.

7 The Issue in Truncate

I’m going to go through this because it’s an example of the kinds of things that can go wrong at
recovery time if one isn’t careful.

The code in sfs itrunc, as you may have noticed if you’ve waded into it, releases blocks with
sfs bfree as it goes, which in turn locks and unlocks the freemap for each change.

This means that blocks released by truncate can be reallocated for use by something else before
the truncate completes. The in-memory state of things gets away with this because sfs itrunc
doesn’t really attempt to unwind itself on error. However, in combination with journaling this isn’t
so innocuous.

Suppose that process P is truncating a large file. Now process Q creates a new file and calls
write on it, which allocates blocks; let’s say that the first data block Q gets for its new file is a
block B released by P . The write finishes and commits, Q goes about its business, and the machine
crashes before P ’s truncate finishes.

What happens then?
At recovery time, the write is a committed transaction so it isn’t going to be undone. But the

truncate is not a committed transaction, so it is going to be undone. Which means that block B is
restored to P ’s large file; but it’s also part of Q’s new file. Now the volume’s corrupt.

What was wrong that allowed this to happen?

• sfs itrunc didn’t follow the two-phase locking rule;

• Q’s transaction read dirty data;

• this made Q’s transaction dependent on P ’s, but it committed without waiting for P ’s transac-
tion to commit first.

5



Implementing support for dependent transactions is possible but not what we want. The fix is to
follow two-phase locking and not release the freemap lock until truncate is done; I’m working on a
patch but need to come up with a solution that’s noninvasive and that doesn’t violate existing lock
ordering constraints.

6


