
Working Sets
•  Proposed by Peter Denning in 1960’s when Multics

exhibited thrashing.
•  Informal definition: the collection of pages that a process

is working with and that must therefore be resident if the
process is to avoid thrashing.

•  The idea is to use the recent memory needs of a process
to predict its future needs.

•  More formally:
•  Let (tau) be the working set parameter.
•  Let the working set of be all pages referenced by a process in

its last seconds of execution.
•  A process will never be executed unless its working set is

resident in main memory.
•  Pages outside the working set may be discarded at any time.

•  Working sets are not quite enough to solve the problem…

3/6/14 CS161 Spring 2014 28

Balance Sets
•  If the sum of the working sets of all runnable processes is

greater than the size of memory, refuse to run some processes
(for awhile).

•  Divide the runnable processes into two groups: active, inactive.
•  When a process is made active, its working set is loaded.
•  When it is made inactive, its working set is allowed to migrate to

disk.
•  The collection of active processes is called a balance set.
•  Now, all you need is an algorithm for moving processes into and

out of the balance set.
•  What happens if the balance set changes too frequently?

•  As working sets change, balance set changes too.
•  This has a problem that you need to constantly update the working set

3/6/14 CS161 Spring 2014 29

Balance Sets
•  If the sum of the working sets of all runnable processes is

greater than the size of memory, refuse to run some processes
(for awhile).

•  Divide the runnable processes into two groups: active, inactive.
•  When a process is made active, its working set is loaded.
•  When it is made inactive, its working set is allowed to migrate to

disk.
•  The collection of active processes is called a balance set.
•  Now, all you need is an algorithm for moving processes into and

out of the balance set.
•  What happens if the balance set changes too frequently?

•  You still get thrashing!
•  As working sets change, balance set changes too.

•  This has a problem that you need to constantly update the working set

3/6/14 CS161 Spring 2014 30

Balance Set Theory

•  The idea was that you stored some sort of capacitor
with each memory page.

•  When the page was referenced, the capacitor was
charged.

•  Then it would discharge slowly.
•  would be determined by the size of the capacitor.
•  In practice, you want separate working sets for each

process, so capacitor should only discharge while
process is running.

•  Not clear what you do if a page is shared!

3/6/14 CS161 Spring 2014 31

Working Sets in Reality

•  Use use bits.
•  OS maintains an idle time value for each page.
•  This is the amount of CPU time received by the

process since the last access to the page.
•  Periodically, scan all the pages of a process.
•  For each use bit that is set, set page’s idle time to 0.
•  If the use bit is clear, add the process’ CPU time

(since the last scan) to the idle time.
•  Turn all bits off during scan.
•  Scans happen on order of every few seconds (in

UNIX, is on the order of a minute or more).

3/6/14 CS161 Spring 2014 32

Parting Thoughts
•  What should be?
•  What happens if is too large?
•  What happens if is too small?
•  What algorithms should be used to determine which processes

are in the balance set?
•  How do we compute working sets if pages are shared?
•  How much memory is needed in order to keep the CPU busy?
•  In the working set model, the CPU may occasionally be idle

even though there are runnable processes.
•  Technology changes problems!

•  In a PC or even a VM, thrashing may be a less critical issue than in
timesharing systems.

•  If one user has too many processes, she can just kill some!
•  With multiple users, the OS must somehow arbitrate fairly.

3/6/14 CS161 Spring 2014 33

