VM Case Study: MIPS R2000

* Topics
 MIPS (software managed VM)

» Learning Objectives:

e Describe the MIPS MMU support.
e Be prepared to undertake assignment 3.

3/12/15 CS161 Spring 2015

The MIPS R2000

 Introduced in 1987.

* One of the first commercial Reduced Instruction Set Computers (RISC),
preceded by the Cray-1 and other supercomputers.

« It has a simple, elegant architecture that has made it a popular target for
homework assignments in computer architecture and operating systems.

 Virtual Address Format:

e Memory addressed in bytes.

» Bits 31-29 are used to partition the virtual address space into four segments:
KUSEG: 07?7?: user-mapped cached
KSEGO: 100: kernel unmapped cached

KSEG1: 101: kernel unmapped uncached
KSEG2: 117?: kernel mapped cached

» Each page is 22 = 4096 bytes
e Avirtual address is translated into a physical address by translating the 20-bit virtual
page number into a physical page number.

Segment
31-29

Page Number: 31-12 Page Offset

3/12/15 CS161 Spring 2015

11-0

MIPS R2000 TLB Structure

« Associativity: Fully Associative

* Replacement policy: Random

« Size: 64 entries (56 random, 8 "wired")
 Each TLB entry is 64 bits.

« The TLB_EntryHi and TLB_EntryLow registers are used to read
and write TLB entries, defining the contents of TLB entries.

The TLB_EntryHI register The TLB_EntryLo register
Virtual Page number (20 bits) Page Frame Number (20 bits)
Address Space ID (6 bits) Mode: (4 bits):
reserved (6 bits) Non-cacheable, Dirty/write-protect,

Valid, and Global
reserved (8 bits)

Virtual Page Number ASID reserved Physical Page Number Mode Reserved
63...44 43...38 37...32 31...12 11...8 7...0

3/12/15 CS161 Spring 2015 3

TLB Instructions

TLBR: Read the TLB entry specified by the index
register into TLB_EntryHi and TLB_EntryLo.

TLBWI: Write the TLB entry specified by the index
register with the contents of TLB EntryHi and
TLB EntrylLo.

TLBWR: Write the TLB entry specified by the random

register with the contents of TLB_EntryHi and
TLB _EntryLo.

TLBP: Probe the TLB for an entry matching the virtual
page number, PID, and Context bits that are in
TLB_EntryHi, observing the Global mode bit.

o Sets the P bit if there are no matching entries. Undefined if
there are multiple matching entries.

3/12/15 CS161 Spring 2015

TLB Regqisters (1)

 The TLB Index register: indicates which TLB entry is
being manipulated.
e Index field (6 bits)
 The P bit indicates the failure of a TLB Probe operation.

P unused index Unused
31 30...14 13...8 7...0

 The TLB Context register: gives you faulting

address and user-page table address.

« PTEBase: (11 bits) upper bits of the user page table base address. Set
by the OS.

e Bad VPN: (19 bits) Set by the hardware on a TLB miss to the page
number (bits 30..12) of the failing virtual address

PTEBase Bad VPN 00
31...21 20 ..2 1-0

3/12/15 CS161 Spring 2015

TLB Registers (2)

« The Random register provides a random numb [8...13] that is
used by the TLBWR (TLB Write Random) instruction.
e This is how random replacement can be implemented.

e The register is readable, although reading the register is not necessary for
TLB management.

unused random Unused
31...14 13...8 7...0

3/12/15 CS161 Spring 2015

Mach 3.0 TLB Miss handler

NESTED(TRAP_tlbn umiss, 0, kl)
mfcO kO, cO tlbcxt (loads context reg into kO0)

mfcO kl, cp epc (load exception PC into k1)

1w k0, 0(kO0) (kO is address of PTE; read it)
nop (load delay)

mtcO k0, c0_tlblo (load entry from PT into TLBlo)
tlbwr (write new entry into the TLB)

J k1l (jump to the faulting inst)

rfe (branch slot; back to user mode)

* Because page tables are large, they are kept in
system virtual memory (k2seg).

* Most of the time, this miss handler won’t generate
any exceptions, but it can ...

3/12/15 CS161 Spring 2015 7

1 GB

512 MB
512 MB

2GB —

3/12/15

Virtual Memory Map

OxFFFFFFFF
K2 seg

0xC0000000

OXBFFFFFFF

k1seg
0xA0000000

OX9FFFFFFF

kOseg
0x80000000

Ox7FFFFFFF

Kuseg
User mode
Address space

0x0

Kernel: mapped cacheable

Kernel: unmapped uncacheable
Both regions map to physical addresses

between 0 and Ox1FFFFFFF
Kernel: unmapped cacheable

User: mapped cacheable

CS161 Spring 2015 8

Typical user Address Space Layout

Ox7FFFFFFF
Reserved
Ox7FFFEOQOO0O0
OX7FFFDFFF User stack
Red Zone
heap
Static data
Read only data
0x00400000 Start of program text
Ox003FFFFF
unused
0x00000000

3/12/15 CS161 Spring 2015

MIPS R2000 Example

Address Translation KUSeg Page Table | K2Seg Page Table

Virtual Addr Physical Addr | VPN Translation | VPN Translation
0x00400000 0 Invalid C0000 00598
0x00402ADC C0001 006C8
0x004010B0 O03FF Invalid
OxO07FFFFFO 00400 0093F COOFE Invalid
0x00000128 00401 00940 COOFF 00123
0x80030284 00402 00941 C0100 00987
OxCO001A2F 00403 O008F3
O0xBOOFFOOD
OxDEADBEEF 00500 OOCDA

00501 O00EF9

O7FFE 00BC2

O7FFF 00731

3/12/15 CS161 Spring 2015 10

MIPS R2000 Example

K2Seg Page Table

Address Translation

KUSeg Page Table

Virtual Addr Physical Addr | VPN Translation | VPN Translation
0x00400000 0x0093F000 | 0 Invalid C0000 00598
0x00402ADC 0x00941ADC] ... C0001 006C8
0x004010B0 0x009400B0 | 003FF Invalid
OxO7FFFFFO Ox00731FFO | 00400 0093F COOFE Invalid
0x00000128 FAULT 00401 00940 COOFF 00123
0x80030284 0x0030284 00402 00941 C0100 00987
0xCO001A2F pxooscsa2E | 00403 008F3
OxBOOFFOOD 0x100FFooD | ---
OxDEADBEEF FAULT 00500 OOCDA

00501 00EF9

O7FFE 00BC2

O7FFF 00731

3/12/15

CS161 Spring 2015

11

MIPS R2000 Recap

The user segment occupies half of the virtual address space.
System memory is organized into three segments.
Each segment defines how memory in the segment is accessed.

System memory can only be accessed when the processor is
executing in system mode.

The virtual page size is 4 KB.

Q1: How can you implement shared memory between two user
processes?

Q2: How can you implement shared memory between the user
and kernel?

Q3: What kind of fragmentation might you get?

Q4: What problems do the page tables pose?

3/12/15 CS161 Spring 2015 12

MIPS R2000 Recap

» The user segment occupies half of the virtual address space and
defines user and system memory.

« System memory is organized into three segments.
« Each segment defines how memory in the segment is accessed.

« System memory can ongl be accessed when the processor is
executing in system mode.

* The virtual page size is 4 KB.

 Q1: How can you implement shared memory between two user
processes?

e Copy PTEs (two page tables contain identical PTES)

. (k)2: ng)w can you implement shared memory between the user and
ernel”

e Kernel can access user memory (in lower portion of address space)
* Q3: What kind of fragmentation might you get?
e No external (fixed size page); some internal.

* Q4: What problems do the page tables pose?

e« Too big! Requires too many memory references!

3/12/15 CS161 Spring 2015 13

