Assignment 3 Section

* Learning Objective

e Write a design document for assignment 3
* Topics:

e Design Principles

 Review MIPS Memory Map

e Qutline what you are asked to do in A3

 TLB Handling

e Paging

e Address Spaces

e Synchronization

3/12/15 CS161 Spring 2015

Design Principles

1. If you find yourself copying lines of code, STOP!

» Before you copy chunks of code, ask if there is a function
somewhere in your future.

e If you repeat the same sequence of lines multiple times, you
are doubling the places you need to debug, and you will
need to debug it.

e Krinsky’s Law: every line of code that has not been tested
has a bug.

« Corollary: if two pieces of code look pretty similar, ask
if they can be implemented as a parameterized
function.

 Fewer lines of code => fewer bugs.

3/12/15 CS161 Spring 2015 2

Design Principles

2. Design abstractions and live with them.

 If you have the abstraction of a file table object or a process
object, use that abstraction.

Have constructors/destructors

Don’t let other code reach its grubby paws inside those objects; build
interfaces.

Decide what code is responsible for the creation and destruction of
objects.

Make the objects debuggable.
Objects may have both internal and external interfaces.

e Use consistent error-handling methodology throughout

3/12/15

As discussed in section, error handling is a place to use gotos.
Think about error handling in your design.
Build things in early to check for and respond to errors.

CS161 Spring 2015

Design Principles

3. Assertions are your friend.

e Use them whenever you find yourself thinking, “OK at this
point we know that X is true.”

* VM bugs often manifest a long time after they actually
happen; assertions are a way to catch them when they
happen instead of much later when you notice that they've
happened.

 More asserts frequently mean you fail faster and ideally,
closer to the location of the actual bug.
4. Test as you go.

e Thoroughly testing small pieces is easier than crudely testing
large pieces (and easier to debug).

3/12/15 CS161 Spring 2015 4

MIPS R2000/3000 Review

OxFFFFFFFF Kernel: mapped cacheable
K2 se If you were to swap kernel
1GB 9 memory, you could use this.

0xC0000000
OXBFFFFFFF Kernel: unmapped uncacheable
512 MB 0xA0000000 klseg Both regions map to physical addresses

between 0 and Ox1FFFFFFF
Kernel: unmapped cacheable

51 2 M B Ox9FFFFFFF K0seg

0x80000000

Ox7FFFFFFF

Kuseg

2GB — User mode User: mapped cacheable

Address space | Your VM system will manage
this memory.
0x0

3/12/15 CS161 Spring 2015 5

MIPS R2000/3000 Review

SYS/161 doesn’t emulate the caching le
1 GB properties of the MIPS R3000, but if it did, |
devices would be mapped into this space. IS.
OxBFFFFFFF Kernel: unmapped uncacheable
512 MB 0xA0000000 klseg Both regions map to physical addresses
between 0 and Ox1FFFFFFF
512 MB Kernel: unmapped cacheable
Pointers in this region, kernel pointers —
map directly into the first 512 MB of
2 GB — physical memory. .
S
Address space | Your VM system will manage
this memory.
0x0

3/12/15 CS161 Spring 2015 6

Your Mission ...

 Handle TLB faults
* Implement paging
e Per-process data structures (page tables)
e Global data structures (coremap)
e Backing store support
e Page eviction

e sbrk()

3/12/15 CS161 Spring 2015

TLB Handling

 Read Vahalia, pages 419-422 (on resources page)
« Start with a simple replacement algorithm

 We provide routines:
* TLB Random()
e TLB Write()
e TLB Read()
* TLB Probe()

e NOTE: TLB_Random() reserves 8 of the TLB entries; it
might be easier to just use TLB_Write and random();

e Suggestion: Ignore address space IDs for now; just
clear the entire TLB on every context switch.

3/12/15 CS161 Spring 2015

Paging

* The tricky bits:

 Managing all the memory mappings for each process.
 Managing the system’s memory.
e Synchronization!

« Bootstrapping

e The canonical chicken and egg problem:

* You cannot kmalloc () until you set up your memory system.

* You cannot set up your memory system without kmalloc ()-ing stuff.
 Look at how ram stealmem() works.

« Remember: YOU must manage ALL of memory.

3/12/15 CS161 Spring 2015

Data Structures

« What are the key data structures?
e Per-process virtual to physical mappings

e Global mapping from physical address to a process and virtual
address pair.

« Design these before you write your design document.

e Get up in front of a whiteboard and draw!

* The white board is one of your most useful tools during design.
* Flesh out the structure and API for your design document.

* Analyze the costs and benefits of your page tables.
e How much memory do they consume?

e Do they require linear searches? (Hint: The correct answer is
no.)

 How do you simply and efficiently do better than linear time?

3/12/15 CS161 Spring 2015 10

Backing Store

* Figure out how to write to/read from disk.

* You will want a pager thread that proactively writes
dirty pages to disk (making them clean).

* Hint: You should never sleep while holding a
spinlock!

* Hint: Every page can have its own place on disk.

 You can make your disks quite large.

* We provide bitmap functionality that is useful for managing
disk space.

e If you put your disk in /tmp (a drive on the local machine),
sys161 will run faster.

e Usevfs open() on 1hdOraw: and use the vnode you get
back for swapping.

3/12/15 CS161 Spring 2015 11

Page Faults

« Three types of page faults:

« VM_FAULT_READONLY: a process is trying to write a page that has only read permissions.
e VM_FAULT_READ: a process is trying to read a page that is not in memory.
* VM_FAULT_WRITE: a process is trying to write a page that is not in memory.

« Handling a fault for page P:
e Confirm that P exists. Check page table.
Decide where to place P.
 If there is free memory, use it!
+ If there isn’t, you'll need to evict someone, who?
* Is kernel memory pageable? Can it be? YES Should it be? NO
* How do you know if a page of memory is free?
* Aha - the coremap (that mapping from PA to process/VA).
Evict the current resident of your target page frame.
« Write it to backing store if necessary.
+ Update page tables.
Read P into memory.
* Update the page table.
Update the TLB

3/12/15 CS161 Spring 2015

Tricky Stuff: Kernel Allocations

« Hint: Do not implement pageable kernel memory.

* Given that: when you give the kernel a page, it stays
there ... forever (unless the kernel voluntarily gives it
back).

* When the kernel needs N pages of contiguous virtual
address space, you need to find N pages of
contiguous physical memory.

» Think carefully about how to do this!

3/12/15 CS161 Spring 2015 13

Address Spaces

» Operations on address spaces:

* as_create
* as_destroy

* as _copy (for fork)

e as activate (for context switching)

 The challenges here are in data structures and synchronization; the code

isn’t too bad.

« But — think carefully about good data structure design and synchronization.
 When possible, make objects synchronize themselves.

 Which is better?

int foo manipulator()

{
lock foo;
manipulate foo;
unlock foo;

}

/* Somewhere else */

ret = foo manipulator();

3/12/15

int foo manipulator()

{

manipulate foo;

}

/* Somewhere else */
lock foo;

ret = foo manipulator();
unlock foo;

CS161 Spring 2015

14

Synchronization

* Points to ponder:

SPL synchronization won’t work with 1/0. Keep this mind.

Don’t create a lock per page: this consumes too much
space. You might want to use a busy bit.

How does locking work when handling a page fault?
How does locking work when evicting someone else’s page?

What if the page | want is in the middle of being evicted by
someone else?

What do | do in fork if a page that | want to copy is not
resident?

« Holland’s Hint: It is easier to debug a VM system with
deadlocks than a VM system with race conditions.

3/12/15

CS161 Spring 2015 15

sbrk ()

» This is mostly bookkeeping.

« BUT — make sure it is compatible with the malloc ()
Implementation we give you.

* Hint: this means you have to read the malloc code.

 We used to make you write your own malloc, but we don't
any more.

« However, you need to understand it to make sbrk work.
e Try explaining it to your partner.
e Evaluate its design.

3/12/15 CS161 Spring 2015 16

Statistics

* You may find yourself wanting to tune your system.
 We frequently gather and post class performance stats.
e This is just for fun and not for any lasting fame and fortune.
« Tuning will require that you know what’s going on.

« Even if you don’t want to tune, statistics will help you
understand and debug your system.

 Add statistics now!

 For example:
e Total number of pages available
e Total number of pages managed by you
 Number of clean pages
 Number of dirty pages
 Number of kernel pages
 Your good idea goes here.

3/12/15 CS161 Spring 2015 17

What you do NOT have to do

« Copy-on-write

« Pageable kernel memory
 Memory-mapped files

o 22-disk swap partitions

 Margo’s Mantra: Get something simple working first.
 Make sure it is robust.
e Only then should you consider adding anything fancy.

3/12/15 CS161 Spring 2015 18

