
Assignment 3 Section

•  Learning Objective
•  Write a design document for assignment 3

•  Topics:
•  Design Principles
•  Review MIPS Memory Map
•  Outline what you are asked to do in A3
•  TLB Handling
•  Paging
•  Address Spaces
•  Synchronization

3/12/15 CS161 Spring 2015 1

Design Principles

1. If you find yourself copying lines of code, STOP!
•  Before you copy chunks of code, ask if there is a function

somewhere in your future.
•  If you repeat the same sequence of lines multiple times, you

are doubling the places you need to debug, and you will
need to debug it.

•  Krinsky’s Law: every line of code that has not been tested
has a bug.

•  Corollary: if two pieces of code look pretty similar, ask
if they can be implemented as a parameterized
function.
•  Fewer lines of code => fewer bugs.

3/12/15 CS161 Spring 2015 2

Design Principles

2. Design abstractions and live with them.
•  If you have the abstraction of a file table object or a process

object, use that abstraction.
•  Have constructors/destructors
•  Don’t let other code reach its grubby paws inside those objects; build

interfaces.
•  Decide what code is responsible for the creation and destruction of

objects.
•  Make the objects debuggable.
•  Objects may have both internal and external interfaces.

•  Use consistent error-handling methodology throughout
•  As discussed in section, error handling is a place to use gotos.
•  Think about error handling in your design.
•  Build things in early to check for and respond to errors.

3/12/15 CS161 Spring 2015 3

Design Principles

3. Assertions are your friend.
•  Use them whenever you find yourself thinking, “OK at this

point we know that X is true.”
•  VM bugs often manifest a long time after they actually

happen; assertions are a way to catch them when they
happen instead of much later when you notice that they’ve
happened.

•  More asserts frequently mean you fail faster and ideally,
closer to the location of the actual bug.

4. Test as you go.
•  Thoroughly testing small pieces is easier than crudely testing

large pieces (and easier to debug).

3/12/15 CS161 Spring 2015 4

MIPS R2000/3000 Review

3/12/15 CS161 Spring 2015 5

0x7FFFFFFF

0x0

Kernel: mapped cacheable
If you were to swap kernel
memory, you could use this.

0xFFFFFFFF

Kuseg
User mode
Address space

2 GB

0xC0000000
K2 seg

0x9FFFFFFF

0x80000000
k0seg

0xBFFFFFFF

0xA0000000
k1seg

1 GB

512 MB

512 MB

Kernel: unmapped uncacheable

Kernel: unmapped cacheable

User: mapped cacheable
Your VM system will manage
this memory.

Both regions map to physical addresses
between 0 and 0x1FFFFFFF

MIPS R2000/3000 Review

3/12/15 CS161 Spring 2015 6

0x7FFFFFFF

0x0

Kernel: mapped cacheable
If you were to swap kernel
memory, you could use this.

0xFFFFFFFF

Kuseg
User mode
Address space

2 GB

0xC0000000
K2 seg

0x9FFFFFFF

0x80000000
k0seg

0xBFFFFFFF

0xA0000000
k1seg

1 GB

512 MB

512 MB

Kernel: unmapped uncacheable

Kernel: unmapped cacheable

User: mapped cacheable
Your VM system will manage
this memory.

Both regions map to physical addresses
between 0 and 0x1FFFFFFF

SYS/161 doesn’t emulate the caching
properties of the MIPS R3000, but if it did,
devices would be mapped into this space.

Pointers in this region, kernel pointers –
map directly into the first 512 MB of
physical memory.

Your Mission …

•  Handle TLB faults
•  Implement paging

•  Per-process data structures (page tables)
•  Global data structures (coremap)
•  Backing store support
•  Page eviction

•  sbrk()!

3/12/15 CS161 Spring 2015 7

TLB Handling

•  Read Vahalia, pages 419-422 (on resources page)
•  Start with a simple replacement algorithm
•  We provide routines:

•  TLB_Random()!
•  TLB_Write()!
•  TLB_Read()!
•  TLB_Probe()!
•  NOTE: TLB_Random() reserves 8 of the TLB entries; it

might be easier to just use TLB_Write and random();

•  Suggestion: Ignore address space IDs for now; just
clear the entire TLB on every context switch.

3/12/15 CS161 Spring 2015 8

Paging

•  The tricky bits:
•  Managing all the memory mappings for each process.
•  Managing the system’s memory.
•  Synchronization!

•  Bootstrapping
•  The canonical chicken and egg problem:

•  You cannot kmalloc() until you set up your memory system.
•  You cannot set up your memory system without kmalloc()-ing stuff.
•  Look at how ram_stealmem() works.
•  Remember: YOU must manage ALL of memory.

3/12/15 CS161 Spring 2015 9

Data Structures

•  What are the key data structures?
•  Per-process virtual to physical mappings
•  Global mapping from physical address to a process and virtual

address pair.
•  Design these before you write your design document.

•  Get up in front of a whiteboard and draw!
•  The white board is one of your most useful tools during design.

•  Flesh out the structure and API for your design document.
•  Analyze the costs and benefits of your page tables.

•  How much memory do they consume?
•  Do they require linear searches? (Hint: The correct answer is

no.)
•  How do you simply and efficiently do better than linear time?

3/12/15 CS161 Spring 2015 10

Backing Store

•  Figure out how to write to/read from disk.
•  You will want a pager thread that proactively writes

dirty pages to disk (making them clean).
•  Hint: You should never sleep while holding a

spinlock!
•  Hint: Every page can have its own place on disk.

•  You can make your disks quite large.
•  We provide bitmap functionality that is useful for managing

disk space.
•  If you put your disk in /tmp (a drive on the local machine),
sys161 will run faster.

•  Use vfs_open() on lhd0raw: and use the vnode you get
back for swapping.

3/12/15 CS161 Spring 2015 11

Page Faults
•  Three types of page faults:

•  VM_FAULT_READONLY: a process is trying to write a page that has only read permissions.
•  VM_FAULT_READ: a process is trying to read a page that is not in memory.
•  VM_FAULT_WRITE: a process is trying to write a page that is not in memory.

•  Handling a fault for page P:
•  Confirm that P exists. Check page table.
•  Decide where to place P.

•  If there is free memory, use it!
•  If there isn’t, you’ll need to evict someone, who?
•  Is kernel memory pageable? Can it be? YES Should it be? NO
•  How do you know if a page of memory is free?
•  Aha – the coremap (that mapping from PA to process/VA).

•  Evict the current resident of your target page frame.
•  Write it to backing store if necessary.
•  Update page tables.

•  Read P into memory.
•  Update the page table.

•  Update the TLB

3/12/15 CS161 Spring 2015 12

Tricky Stuff: Kernel Allocations

•  Hint: Do not implement pageable kernel memory.
•  Given that: when you give the kernel a page, it stays

there … forever (unless the kernel voluntarily gives it
back).

•  When the kernel needs N pages of contiguous virtual
address space, you need to find N pages of
contiguous physical memory.

•  Think carefully about how to do this!

3/12/15 CS161 Spring 2015 13

Address Spaces
•  Operations on address spaces:

•  as_create!
•  as_destroy!
•  as_copy (for fork)!
•  as_activate (for context switching)!

•  The challenges here are in data structures and synchronization; the code
isn’t too bad.

•  But – think carefully about good data structure design and synchronization.
•  When possible, make objects synchronize themselves.
•  Which is better?

3/12/15 CS161 Spring 2015 14

int foo_manipulator()!
{!
 lock foo;!
 manipulate foo;!
 unlock foo;!
}!
!
/* Somewhere else */!
ret = foo_manipulator();!

int foo_manipulator()!
{!
 manipulate foo;!
}!
!
/* Somewhere else */!
lock foo;!
ret = foo_manipulator();!
unlock foo;!

Synchronization

•  Points to ponder:
•  SPL synchronization won’t work with I/O. Keep this mind.
•  Don’t create a lock per page: this consumes too much

space. You might want to use a busy bit.
•  How does locking work when handling a page fault?
•  How does locking work when evicting someone else’s page?
•  What if the page I want is in the middle of being evicted by

someone else?
•  What do I do in fork if a page that I want to copy is not

resident?

•  Holland’s Hint: It is easier to debug a VM system with
deadlocks than a VM system with race conditions.

3/12/15 CS161 Spring 2015 15

sbrk()!

•  This is mostly bookkeeping.
•  BUT – make sure it is compatible with the malloc()

implementation we give you.
•  Hint: this means you have to read the malloc code.

•  We used to make you write your own malloc, but we don’t
any more.

•  However, you need to understand it to make sbrk work.
•  Try explaining it to your partner.
•  Evaluate its design.

3/12/15 CS161 Spring 2015 16

Statistics
•  You may find yourself wanting to tune your system.

•  We frequently gather and post class performance stats.
•  This is just for fun and not for any lasting fame and fortune.

•  Tuning will require that you know what’s going on.
•  Even if you don’t want to tune, statistics will help you

understand and debug your system.
•  Add statistics now!
•  For example:

•  Total number of pages available
•  Total number of pages managed by you
•  Number of clean pages
•  Number of dirty pages
•  Number of kernel pages
•  Your good idea goes here.

3/12/15 CS161 Spring 2015 17

What you do NOT have to do

•  Copy-on-write
•  Pageable kernel memory
•  Memory-mapped files
•  22-disk swap partitions

•  Margo’s Mantra: Get something simple working first.
•  Make sure it is robust.
•  Only then should you consider adding anything fancy.

3/12/15 CS161 Spring 2015 18

