
2/10/15 CS161 Spring 2015 1 1

Group Exercises

•  Learning Objectives:
•  Be able to follow threads of execution across domain

crossings
•  Have a clear mental model of the critical data structures and

state you’ll need to maintain in the operating system in order
to implement user-level processes.

Process Cartoons

•  If we ask you to draw “process cartoons,” we mean
diagrams like this one – you may have to draw a
sequence of them or come up with a suitable way to
represent animation. You should also include a bit more
detail such as kernel stacks.

2/10/15 CS161 Spring 2015 2

Kernel Address Space

User address space

Exercise 1: Warmup

•  Draw a cartoon of a user process making a system
call (e.g., getpid) that the OS can handle immediately,
returning to the invoking process.
•  Does this involve a thread switch?
•  Does this involve a domain crossing?
•  Does this involve more than one domain crossing?

•  After you have completed your drawing, think about
what your drawing implies for assignment 2. Does it
suggest any particular data structures or standard
functions you’ll need?

2/10/15 CS161 Spring 2015 3

Exercise 2: A bit trickier

•  This time, draw a cartoon of a process making a
system call that is going to block (e.g., read), causing
the kernel to run some other thread.

•  Again, after you’ve completed your drawing, discuss
any implications this sequence of events has on the
design of assignment 2.

2/10/15 CS161 Spring 2015 4

Exercise 3: The Biggie

•  Draw a cartoon of a fork system call.
•  Think carefully about what it means to create a new process.

What structures do you have to conjure up? What data
structures do you need to allocate? Where should those
data structures live?

•  And, once again, after you’ve got a diagram or
sequence of diagrams, think about the implications
for your design and implementation in assignment 2.

2/10/15 CS161 Spring 2015 5

